Standardization
Import Modules¶
%matplotlib inline
# Import modules
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
from sklearn.preprocessing import StandardScaler
# Set warning option
warnings.filterwarnings("ignore") # Remove Package Warning
Create DataFrame¶
# Create example dataframe
df = pd.DataFrame(data = {'Feature 1': np.random.randint(50,100, size=10),
'Feature 2': np.random.randint(0,100, size= 10),
'Feature 3': np.random.randint(0,100, size=10),
'Feature 4': np.random.randint(0,100, size=10)})
# View the dataframe
df
Standardize Feature¶
# Standardize features
scaler = StandardScaler()
df_standardized = pd.DataFrame(data=scaler.fit_transform(df), columns=df.columns)
# View standardized DataFrame
df_standardized
Visualize Orginal Feature¶
# Plot Dist Plot
sns.distplot(df['Feature 1']);
plt.title('Distribution of Feature 1')
plt.ylabel('Density')
Visualize Standardized Feature¶
# Look at the X-axis, we in a new landscape now
sns.distplot(df_standardized['Feature 1']);
plt.title('Distribution of Feature 1')
plt.ylabel('Density')
Notice that our y ticks have changed. This is great!
Author: Kavi Sekhon